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Introduction 
 

This is the second of two papers describing the application of simulation-optimization methods to a 
gas storage field development planning problem.  The first paper1 began by giving a detailed description of 
the field and earlier efforts to model the effects of selected field development options on the field’s 
productivity. It then outlined the basic steps required to apply a combination of artificial neural networks 
(ANNs) and the genetic algorithm (GA) to explore a much larger universe of field development planning 
options. Familiarity with the contents of the first paper is a prerequisite for understanding the material 
presented in this second paper.  
 

The optimized solutions to the planning problem presented in the first paper were based on a 
deterministic, “best guess” view of the field’s reservoir properties. However, practical field development 
planning dictates that at least some of the uncertainties associated with these properties be taken into 
account.  This second paper describes procedures and presents results showing how the ANN-GA approach 
to optimization can be extended to accommodate three sources of uncertainty pertinent to the field being 
studied: 

 
1. Alternative hypotheses regarding the permeabilities in a key region of the field 
2. Uncertainty regarding the likely success of remediating existing wells 
3. Risks associated with siting new wells in relatively unknown regions of the field 

 
The first two sources involve physical properties (permeabilities and skin factors, respectively) that are 
embedded in the simulation of the reservoir response and, therefore, require substantial changes to the 
knowledge base of simulations. The third source of uncertainty is examined simply by making changes to 
the objective functions driving the optimization.  
 

To streamline the presentation of results, only one of the two injection/withdrawal scenarios 
described in the first paper is included here, namely the 30-day peak service at the 2.5 Bcf baseload. 
 
Modifications to the FORGAS/IMEX Model 
 

Prior to undertaking the uncertainty analyses, two alterations to the modeling of operations in the 
field were made.  These changes were unrelated to the uncertainty issues and were intended to improve the  
realism of the simulations. 

 
The first of these changes concerned the manner in which the impact of low wellhead pressures was 

accounted for.  The first version of the model contained no simulation of compression facilities. Any 
flowing wellhead pressures below 70 psia occurring anytime during the period of simulation were simply 
recorded and subsequently included in the objective functions as a cost of doing business. This was 
unsatisfactory because converting low pressure conditions to dollar costs was an arbitrary process and 
because it failed to account for real engineering constraints such as minimum tolerable suction pressure. In 
the absence of plant data on which to base a history match, a fictitious compressor was modeled within 
FORGAS to govern withdrawal operations. The parameters selected to simulate the compressor were 
judged to be reasonable approximations of operating conditions at the actual plant: 
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Table 1—FORGAS Parameters Controlling the Operation of 

a Fictitious Production Plant Compressor 
  
Maximum capacity  40,000.00  bhp  
Delivery pressure 130.00  bhp 
Initial power installed  0.00  bhp 
Maximum added compression  40,000.00  bhp 
Compressor efficiency  0.85 
Power per unit  1.00  bhp 
Fuel per unit  0.26  Mcfd 
Number of compression stages  1 
Minimum suction pressure  50.00  bhp 

 
 
In the withdrawal scenario used for this study, compression is only required during the peak service period 
itself. For the baseline no-action case, fuel usage, i.e. the volume of withdrawn gas which must be diverted 
to power the compressor, jumped as high as 436.5 Mcfd before the compressor reached capacity. Because 
of this overhead, adding compression facilities to the model increased the size of the cumulative contract 
shortfall on the baseline case from 0.2652 Bcf to 0.3680 Bcf, clearly making the field development planning 
problem more challenging than before. An unexpected consequence of incorporating compression into the 
model, which only became apparent after the knowledge base was recreated, is that there appears to be a 
point, 0.0101 Bcf, below which no field development plan can lower the cumulative shortfall. This may 
represent a flaw in the simulation or an actual limit imposed by the practice of siphoning off a portion of 
withdrawn gas to power the compressor. The impact of this phenomenon will be discussed later. 
 
 A second alteration also made the management problem more difficult to solve. In the earlier model,  
the effect of drilling a new vertical well or remediating an existing well was simulated by changing the skin 
factor of the affected well to 2.0. This value is reasonable for new wells but was judged to be too optimistic 
in the case of well remediations. Consequently, a skin factor of 5.0 was employed as a more realistic 
expected outcome of remediation. By reducing the effectiveness of well remediation, it became possible for 
the more costly but also more effective strategy of drilling new wells to appear in the optimal solutions. 
 
Alternative Hypotheses for the Reservoir’s Permeability 
 
 Figure 1 illustrates the permeabilities associated with each grid block of the IMEX model of the 
field, overlaid with white squares to indicate the location of existing wells. The field is divided into a main 
section in the north, west, and south and a second, smaller section well to the east. The low-permeability 
(0.1 md) region separating the sections is indicated by three connected rectangles. If flow in this middle 
region were, in fact, higher than is currently thought, the 30-day peak service scenario might be achieved at 
considerably less cost. To estimate if it is worth going to the expense of gathering further data in this region, 
two alternatives to this most conservative permeability model were created. These alternatives simply 
consisted of setting the permeabilities in the three-rectangle region to 1.0 md, creating the “medium-
permeability” model, and 100.0 md, to create the “high-permeability” model. An idea of how the increase in 
flow over this region affects the management problem can be seen from the improvement in contact 
shortfalls for the baseline no-action case: 0.3680 Bcf for the original low-permeability model, 0.2479 Bcf 
for medium permeability, and 0.1149 Bcf for high permeability. 
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 Selecting two alternative points from the permeability continuum and assigning them, as a block, to 
the entire region is obviously not representative of the geostatistical universe of possibilities for that region. 
However, the goal of this analysis is to pick reasonable alternative views of the reservoir, re-conduct the 
optimization based on those alternatives, and decide if the improvements in the cost of field development 
justify the expense of drilling observation wells to test the validity of the alternatives. 
 
 Figure 2 presents the relative locations of the existing wells and the various planning options 
(vertical well remediations, drilling new vertical wells, and adding injection capability to the existing 
horizontal well), that were selected for study and which are described in detail in the first paper. Increasing 
the permeability of the questionable region opens up the possibility of siting new vertical wells in that 
region. However, any solutions that included wells in the questionable region would only apply to the 
higher-permeability models of the field. A more practical approach is to attempt to identify optimized 
solutions that hold across all three permeability models.  
 

 
Fig. 1—Natural log scaling of permeabilities (in md) in the gas 

storage field.  White squares indicate the locations of existing wells. 

 
 

Fig. 2—Relative locations of wells and prospective well locations 
being manipulated in the optimization study. 
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Expected vs Pessimistic Remediation Outcomes 
 
 As was mentioned above, the effectiveness of remediation was implemented by setting the skin 
factor of the remediated well to 5.0. This is referred to as the “expected-outcome” model of remediation 
because the value 5.0 seemed a reasonable expectation for remediation. Since there exists some unknown 
likelihood that the remediation will not produce such a favorable reduction in skin factor, some procedure 
was required to account for the impact of unfavorable remediation outcomes on the optimized solutions. 
 
 The first plan to incorporate degrees of remediation success involved multiple simulations of the 
impact of each candidate well based on a Monte Carlo sampling over the distribution of likely skin factors 
for that well. In the revised problem formulation, a remediation candidate well would not simply be 
included or not included in the field development plan but would be included with some expectation of 
success. If the reservoir’s response to each well were linear, the construction and evaluation of such a 
response function would be straightforward. However, in a system where each well’s impact is affected by 
the presence or absence of other wells in the development plan, the amount of simulation required to build 
the response function becomes prohibitive. 
 
 Instead, the same reasoning that guided the selection of alternative hypotheses for the permeabilities 
problem was applied to the remediation outcomes problem. For decision-making purposes, it is probably 
sufficient to pick one or more contrasting views of the outcomes to determine 1) how sensitive the 
optimized solutions are to variation in the remediation outcomes, and 2) how much additional cost is 
required to accommodate a more pessimistic set of outcomes. To compare with the “expected-outcome” 
model described earlier, a “pessimistic-outcome” model was created. In this model, when a remediation 
candidate was included in the field development plan, its skin factor was set to 50% of its unremediated 
skin factor. For example, R1’s unremediated skin factor was 40.0.  When selected for inclusion in a 
development plan, its skin factor was set to 20.0. Since the same rule applied to any and all remediation 
candidates, this model truly represents the case in which all attempted remediations have relatively 
unsuccessful outcomes. 
 
 An idea of the impact this change in skin factors has on reservoir response can be seen in the table 2.  
 

Table 2—Percentage Improvement Over Baseline in Contract Shortfall  
Produced by Each Candidate Under Two Remediation Outcomes 

(Given the low-permeability model) 
 

   Improvement in Contract Shortfall 
Well Original Skin Expected Outcome Pessimistic Outcome 
 
R1 

 
40.0 

 
13.6% 

 
4.2% 

R2 20.0 4.0% 2.4% 
R3 20.0 10.9% 5.5% 
R4 40.0 14.2% 4.8% 
R5 31.0 14.0% 6.7% 
R6 37.6 8.9% 1.7% 
R7 31.0 12.1%  4.2% 
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Recreating the Knowledge Base of Simulations 
 
 Because of the changes made to incorporate compression into the model of the field, the entire 
knowledge base was recreated from scratch. This involved generating a set of 524 field development plans 
according to the same set of rules described in the first paper. The set consisted of: 
 

1. The no-action case 
2. 23 single-action plans (one for each of the 23 possible development options) 
3. 500 multiple-action plans 

 
Each plan underwent four separate simulations, all involving the 30-peak service at 2.5 Bcf baseload 
scenario but varying the permeabilities and remediation-outcome conditions, as follows: 
 

1. Expected-remediation outcomes with the original low-permeability reservoir model 
2. Expected-remediation outcomes with the medium-permeability reservoir model 
3. Expected-remediation outcomes with the high-permeability reservoir model 
4. Pessimistic-remediation outcomes with the low-permeability reservoir model 

 
Since only one injection/withdrawal scenario was being considered, the entire knowledge base was 
recreated in about 100 hours of CPU time on a dedicated Pentium III processor.  
 
Modifications to the Objective Functions 
 
 The analyses involving alternative permeabilities and remediation outcomes do not, in themselves, 
require any changes to the objective function used to evaluate the effectiveness of a given field development 
plan. However, the addition of compression facilities to the simulation made the old method of assigning a 
penalty for low pressure conditions at the wellhead obsolete. With compression included in the model, any 
contract shortfall displayed by a development plan already includes most of the economic penalty (i.e. 
withdrawn gas having to be diverted to power the compressor rather than being available for delivery to the 
customer) associated with low pressures. There may also be a certain amount of wear on equipment which 
could be added as an additional penalty. But since compression is only required for 30 days out of the 
withdrawal season and the period over which the optimization exercise extends is only three years, this cost 
of doing business was considered too trivial to include in the objective function. The general objective 
function continues to be defined as follows: 
 
     Total  = w1$Cost + w2Risk%                          (1) 
 
The only change is that $Cost no longer contains the low pressure conditions penalty described in the first 
paper. To simplify the presentation of results, only one set of weights (w1 = 0.33, w2 = 0.67) was applied. A 
major advantage of emphasizing risk-reduction is that the objective function is less sensitive to variations in 
the market price of natural gas which the company may have to purchase to make up shortfalls.  
 
Retraining the ANNs 
 
 Under the modified objective function, only one attribute – contract shortfall – needed to be 
estimated. However, the attribute could be expected to behave differently under the four different reservoir 
models. So, four ANNs were trained and tested from the recreated knowledge base of simulations, using the 
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Fig. 3—Scatter plots of predicted vs. actual contract shortfall comparing linear and ANN predictors over the 

three permeability models of the reservoir; shortfalls are scaled from 0.0 – 1.0. 

Simulation-Optimization 6



 
same procedures described in the first paper. Of the 524 cases in the knowledge base, 150 of the multiple-
action cases were randomly selected for the test set, leaving a training set size of 374. Given the 
nonlinearities potentially introduced by adding compression facilities to the model, it was expected that 
these training and testing set sizes would be insufficient to capture the underlying relationships. However, 
the test results indicated otherwise. The scatter plots in Fig. 3 are intended to illustrate the apparent ease 
with which the ANNs are estimating contract shortfall with compression under the three different 
permeability models. Scatterplots for the corresponding linear predictors are also included. 

 
This first item of interest in the figure concerns the accuracies for the low permeability model. 

Despite any complexities introduced by the addition of compression, both the linear predictor and the ANN 
yield high predictive accuracies (R2’s of 0.891 and 0.941, respectively) on the 150-case test set. Visual 
examination of the plots also suggests that accuracy is a good at the low end of the scale, where the search 
for optimal field development plans will be concentrated, as elsewhere. 

 
Consistent with the notion that increasing flow in the disputed section makes the withdrawal 

contract easier to meet (and, consequently, easier to predict), the ANNs’ predictive accuracies on the 
medium- and high-permeability models increase to 0.987 and 0.986, respectively. Note, however, that this 
is not the case for the linear predictors, whose R2’s drop to 0.875 and 0.593. Inspection of the plots clearly 
shows the problem encountered with the linear predictors. As mentioned earlier, there appears to no way, in 
the current model, to achieve a cumulative shortfall lower than 0.0101 Bcf. In the low permeabilitiy model, 
no plans in the test set approach this limit. It is met, however, in the higher-permeability models. The ANNs 
correctly capture this leveling-off phenomenon but the linear predictors are unable to do so.  
 
 For space reasons, the scatter plots for the linear and ANN predictors of contract shortfall under the 
pessimistic remediation outcome were excluded from the figure. The R2’s associated with these predictors 
are 0.950 for the linear predictor and 0.972 for the ANN. 
 
Search Procedures 
 
 The same genetic algorithm (GA) implementation details described in the first paper were also 
employed for the uncertainty analyses. It will be important to bear in mind that when the results of 
optimized searches based on ANN predictions of contract shortfall are presented, the tables display the 
scores calculated from the simulators’ verification of the optimal solutions, not the original scores 
calculated from the ANN predictions. 
 
Optimized Solutions for Alternative Permeability Models 
 
 Table 3 presents the three lowest-scoring field development plans obtained by two search techniques 
(simply querying the cases in the knowledge base and GA search employing ANNs as predictors) under the 
three permeability models. The scores associated with the baseline no-action case under each model are also 
included for reference. Where remediation candidates appear in the solutions, it can be assumed that scores 
reflect the expected remediation outcome (a skin factor of 5.0). Some notable features of these results are as 
follows:  
 

1. Although the expected outcome of remediation is less optimistic than in the first paper, the 
cheapness of remediation relative to drilling new wells combined with the fact that all the 
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remediation candidates are sited in high-permeability areas means that remediation options continue 
to dominate the solutions. 

2. Even so, we do observe that the minimization of risk necessitates the drilling of two new wells, at 
least under the original, low-permeability model. 

3. The effect of increasing permeability in the disputed section is, as anticipated, to make the 
management problem cheaper to solve: the need for expensive new wells disappears. 

4. As the management problem becomes easier, there is also less difference between the lowest-scoring 
cases in the knowledge base and the optimized solutions. In fact, under the high permeability model, 
no optimization was conducted because the cases from the knowledge base were already bumping 
up against the 0.0101 Bcf limit (reflected in the 8.8% entries under Risk%) for contract shortfall. 

 
 

Table 3. Optimized Development Plans Under Three Permeability Models  
(Risk-emphasized Objective Function) 

 
Permeability 
Model 

 
Search 
Method 

 
Total 
Score 

 
 

Risk% 

 
 

$Cost 

 
 

Development Plan 
 
Low 
 

 
-- 
 

 
0.7994 

 
100.0 

 
    736,000 

 
No-action case 

 Knowledge  0.2394 8.5  1,036,800 R1, R3, R4, R6, R7, NV06, NV13, NV14 
 Base Query  0.2580 3.5  1,335,600 R1 - R7, NV05, NV06, NV14, NV19 
  0.2595 3.9  1,326,000 R1, R3 - R7, NV13, NV15, NV19, NV20, IHOR 

 
 Optimization/ 0.1500 3.4     723,200 R1 - R7, NV06, NV20 
 ANNs 0.1604 5.1     776,644 R1, R3 - R7, NV06, NV13 
  0.1967 9.2     767,800 R1 - R7, NV13, NV20, IHOR 
 
Medium 
 

 
-- 

 
0.7701 

 
100.0 

 
    495,800 

 
No-action case 

 Knowledge 0.2009 24.6     177,200 R1, R2, R5, R7 
 Base Query 0.2281 4.1     994,200 R1, R3, R4, R6, R7, NV06, NV13, NV14   
  

 
0.2306 5.2     970,600 R1, R6, NV13, NV17, NV20, IHOR 

 
 Optimization/ 0.0487 4.1     106,200 R1 - R7 
 ANNs 0.0628 5.8     117,000 R1 - R7, IHOR 
  0.1049 4.1     384,200 R1, R3 - R6, NV13, IHOR 
 
High 
 

 
-- 

 
0.7248 

 
100.0 

 
    229,800 

 
No-action case 

 Knowledge 0.0733 8.8       60,200 R1, R5, R7 
 Base Query 0.0768 8.8       75,200 R1, R2, R5, R7 
  0.1415 8.8     346,200 R1, R4, NV13 

 
From the standpoint of practical decision-making, a plan of action to be constructed from Table 3 might 

look as follows: 
 

1. Remediate wells R1, R5, and R7 under the high permeability assumption. It does not matter if this 
permeability model is too optimistic because the best solutions found under the lower permeability 
models include the remediation of these wells. 
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2. If step 1 fails to produce the desired performance results, add the rest of the remediation candidates 
to the plan, as indicated by the optimal solution under the medium permeability model. Again, 
nothing is lost if the medium permeability model is also too optimistic. 

3. Only if the field still does not perform as desired would drilling of two new wells (NV06 for certain, 
paired with either NV20 or perhaps NV13) be indicated. 

 
Optimized Solutions for Expected vs Pessimistic Remediation Outcomes 
 
 Table 4 contrasts the solutions obtained when the outcomes of remediation are expected (resulting in 
skin factors of 5.0) vs. when they are poor (achieving skin factors which represent only a 50% 
improvement). In both cases, the low permeability model of the reservoir is in force.  
 

Table 4. Optimized Development Plans Under Expected vs. Pessimistic 
Remediation Outcomes 

(Risk-emphasized Objective Function) 
 
Remediation 
Outcome 

 
Search 
Method 

 
Total 
Score 

 
 

Risk% 

 
 

$Cost 

 
 

Development Plan 
      
Expecteda Knowledge  0.2394 8.5  1,036,800 R1, R3, R4, R6, R7, NV06, NV13, NV14 
 Base Query 0.2580 3.5  1,335,600 R1 - R7, NV05, NV06, NV14, NV19 
  0.2595 3.9  1,326,000 R1, R3 - R7, NV13, NV15, NV19, NV20, IHOR 

 
 Optimization/ 0.1500 3.4     723,200 R1 - R7, NV06, NV20 
 ANNs 0.1604 5.1     776,644 R1, R3 - R7, NV06, NV13 
  0.1967 9.2     767,800 R1 - R7, NV13, NV20, IHOR 
      
Pessimistic Knowledge 0.4379 26.5  1,482,200 R1, R3, R5 - R7, NV13, NV17, NV20, NV23, IHOR 
 Base Query 0.4401 26.6  1,492,600 R1, R3 - R7, NV13, NV15, NV19, NV20, IHOR 
  

 
0.4425 26.9  1,494,800 R1 - R6, NV12, NV13, NV17, NV20, IHOR 

 
 Optimization/ 0.3887 26.6  1,199,600 R1 - R7, NV13, NV14, NV20 
 ANNs 0.3934 27.5  1,191,400 R1 - R5, R7, NV13, NV14, NV20 
  0.3954 34.1     951,000 R1 - R7, NV13, NV20, IHOR 
 

a These are the same results as presented in the Low Permeability section of Table 3 
 

The pessimistic model is a fairly extreme one since it assumes that all the attempted remediations 
will be relatively ineffective. However, it is still possible to apply reasoning similar to that outlined for the 
three permeability models. In fact, the optimized solutions for the pessimistic outcome assumption can be 
incorporated into the plan of action as follows: 

 
4. If the results of step 3 fail to produce the desired field performance, drill a third new vertical 

well at location NV14. 
 
A flaw in this plan is that the solutions under the pessimistic assumption do not include NV06, which seems 
to be the preferred location under the expected outcome assumption. A compromise might consist of 
drilling NV13 and NV20 at step 3, rather than coupling NV06 with either NV13 or NV20. 
 
 A further concern is raised by the magnitude of the scores under the pessimistic outcome 
assumption. Note that it appears impossible to reduce the Risk% values beyond 26.5% and that optimization 
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produces only a small improvement over the cases found in the knowledge base. This may indicate that the 
management problem is not really solvable under these most pessimistic assumptions. If the decision-
makers have reason to believe that the pessimistic assumption is realistic, these results might indicate that 
no attempt should be made to upgrade the field to meet 30-day peak service demands at the 2.5 Bcf 
baseload. 
   
“Handicapping” New Well Locations 

 
 The third source of uncertainty being 
addressed in this paper concerns decreasing 
confidence in the permeabilities assigned to grid 
blocks as their distance from known wells 
increases. Rather than taking the approach 
applied for disputed permeabilities in the mid-
section, which involved creating alternate 
knowledge bases to reflect different views of 
reality, this form of uncertainty was handled by 
simply adding a distance penalty term to the 
objective function:  
 
     Total  = w1$Cost + w2Risk% + w3Distance   (2) 
 
where Distance was merely the sum, over each 
new well location in the field development plan, 
of the mean distances in table 5. This sum was 
then normalized between 0.0 and 1.0, with the 
upper bound determined by the largest such sum 
in the cases in the knowledge base. Since the 
remediation candidates and the injection facility 
for the horizontal well would always be 
contributing a distance of 0.0 to this term, this 
method by itself would greatly favor 
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be ne

Simul
Table 5. Each New Well’s Mean Distance from 
Existing Neighbors and Individual Impact on 

ontract Shortfall Under Two Permeability Models 
 

Improvement Over Baseline 

cation 

 
Mean 

Distance 
(in ft.) Low 

Permeability 
Medium 

Permeability 

06 1601  9.7%  9.8% 
07 1795  1.2%  1.3% 
10 1901  4.1%  6.2% 
20 1934  20.9%  26.3% 
12 1952  2.7%  3.2% 
09 2067  3.6%  7.1% 
17 2143  14.4%  15.0% 
08 2272  1.1%  1.2% 
05 2370  2.6%  3.6% 
14 2418  15.5%  14.8% 
15 2712  16.5%  20.0% 
11 2742  4.9%  4.6% 
19 2925  6.8%  8.4% 
13 2934  31.0%  35.5% 
23 3954 5.6% 4.6%
development plans consisting only of those 
cular options. To counteract this bias, the scaled Distance term of any plan with a distance of 0.0 was 
 the scaled value of its Risk% term. This was effectively the same as applying the following function 
se cases: 

Total  = w1$Cost + (w2+w3)Risk%             (3) 

The mean distances in Table 5 were calculated by identifying the three nearest neighbors of each 
t well and averaging their distance from the target well. Table 5 also includes the individual impact on 
act shortfall of each new well location under the lower two permeability models. This information will 
eded to interpret the optimized solutions.  

 
Table 6. Top 15 Development Plans Obtained From Two Cost/Risk/Distance Weighting Schemes

Under Two Permeability Models 

ation-Optimization 10



 
Low Permeability Model 

 
WCost       
WRisk  
WDistance 

: 0.1 
: 0.9 
: 0.0 

WCost       
WRisk  
WDistance 

: 0.1 
: 0.6 
: 0.3 

 
Existing Wells 

 
New Locations 

 
Existing Wells 

 
New Locations 

 
R1, R2, R4 – R7 

 
NV06, NV13, NV20 

 
R1 – R7 

 
NV06 

R1 – R7 NV09, NV13, NV20 R1, R2, R4 – R7 NV06 
R1 – R7 NV06, NV13, NV20 R1 – R7 NV06, NV20 
R1 – R7 NV06, NV13, NV17 R1, R3 – R7 NV06, NV20 
R1 – R7 NV06, NV13, NV19, NV20 R1 – R7 NV06, NV17 
R1 – R7 NV06, NV13, NV14, NV17 R1, R2, R4 – R7 NV06, NV20 
R1 – R7 NV06, NV10, NV13, NV20 R1 – R4, R6, R7 NV06 
R1 – R7 NV06, NV13, NV15, NV20 R1 – R4, R6, R7 NV06, NV20 
R1 – R7 NV06, NV09, NV13, NV17 R1, R3 – R7, IHOR NV20 
R1, R3 - R7 NV06, NV13, NV19, NV20 R1 – R4, R6, R7, IHOR NV06, NV20 
R1 – R7 NV06, NV13, NV15 R1 – R4, R6, R7 NV01, NV13 
R1, R2, R4 – R7 NV06, NV13, NV15, NV20 R1 – R7 NV20 
R1 – R7 NV06, NV15, NV17, NV20 R1 – R7, IHOR NV13 
R1 – R7 NV06, NV12, NV13, NV20 R1 – R7 NV09, NV20 
R1 – R7 NV10, NV13, NV20 R1 – R4, R6, R7 NV20 
 

Medium Permeability Model 
 

WCost       
WRisk  
WDistance 

: 0.1 
: 0.9 
: 0.0 

WCost       
WRisk  
WDistance 

: 0.1 
: 0.6 
: 0.3 

 
Existing Wells 
 
R1 – R7, IHOR 

 
New Locations 
 
-- 

 
Existing Wells 
 
R1 – R5, R7 

 
New Locations 
 
NV06 

R1, R3 – R5, R7, IHOR NV13 R1, R2, R4 – R7, IHOR NV06 
R1, R2, R4, R5, R7, IHOR NV13 R1 – R7 NV06 
R1, R4 – R7, IHOR NV13 R1 – R7, IHOR NV06 
R1 – R5, R7 NV13 R1 – R5, R7, IHOR NV06 
R1 – R5, R7, IHOR NV13 R1 – R7 NV07 
R1, R3 – R7, IHOR NV13 R1 – R7, IHOR NV07 
R1 – R6, IHOR NV13 R1, R3 – R5, R7, IHOR NV20 
R1 – R4, R6, R7, IHOR NV13 R1 – R3, R5, R7, IHOR NV20 
R1 – R5, R7, IHOR NV20 R1, R3, R5 – R7, IHOR NV20 
R1, R3 – R7, IHOR NV20 R1, R4 – R7 NV20 
R1 – R6, IHOR NV20 R1, R4 – R7, IHOR NV20 
R1 – R4, R6, R7, IHOR NV20 R1 – R7 NV10 
R1 – R3, R5 – R7, IHOR NV13 R1, R3 – R7 NV20 
R1 – R3, R5 – R7, IHOR NV20 R1 – R4, R6, R7 NV20 

 
 Table 6 presents sets of optimized solutions obtained by applying two different sets of 

weights to the three terms in the objective function. To simplify the table, specific scores associated with 
each plan have been suppressed. Instead, the components of each plan are divided into existing well and 
new well locations. Optimized solutions obtained when the 0.1/0.9/0.0 set of weights is applied to the terms 
in the objective function are given on the left side of the table. These results represent the case where 
distance is not a factor for any plan. The extreme emphasis on Risk% over $Cost is needed to force the 
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appearance of new wells in the solutions. Any significant weight associated with $Cost produces the usual 
slate of solutions in which the remediation candidates are dominant. $Cost requires at least a small positve 
weight, however, to avoid the appearance of ludicrously expensive plans that would never be seriously 
considered. Optimized solutions obtained when some weight (0.3) is given to the distance term appear on 
the right side of the table. The most useful way to interpret the table is to determine if there is a change in 
the frequency of occurrence of a particular new well location between the left- and right-side solutions. 
 
 Beginning with the solutions obtained under the low permeability model, NV06, NV13, and NV20 are 
dominant in the solutions in which distance is not a factor. When distance contributes to the objective function, 
NV13’s frequency of occurrence is greatly reduced. This is consistent with the mean distances associated with 
each of these wells in Table 5. Although it is clearly a very influential location – single-handedly producing a 
31.0% improvement in contract shortfall – NV13 is the second to most distant well in the set of new locations. 
In contrast, NV06 and NV20 remain in the solutions because they are much closer to existing wells. 
 
 The effect of including a distance penalty is even clearer in the medium permeability model. When 
distance is not factored in, only NV13 and NV20 appear in the optimized solutions. Apparently, increasing flow 
in the mid-section of the field makes it possible to meet the withdrawal contract without assistance from new 
wells in the northern portion of the field, which is where NV06 is sited. When distance becomes an issue, 
however, NV13 drops out of the solution set, NV20 is retained, and NV06 makes an appearance. 
 
 Unlike the solutions obtained when alternative remediation outcomes and mid-section permeabilities are 
contrasted with each other, the results in Table 6 do not represent different realities that must be somehow 
reconciled with each other to develop a plan of action. Rather, they simply illustrate the trade-offs decision-
makers may have to confront, given their tolerance for unknowns. Drilling at NV20 requires no trade-off 
because it is both an influential well and relatively centrally located. Drilling at NV06 and NV13, however, 
require that the decision-maker choose between the greater confidence in the permeability assigned to NV06’s 
vicinity and NV13’s apparently greater influence on the reservoir. 
 
Other Issues 
 

Although it is not directly related to uncertainty issues, the introduction of compression facilities into 
the basic model of the field necessitated a re-examination of the ANN accuracy question.  That is, are the 
solutions obtained from searches relying on ANN predictions as good as those obtained by using the original 
simulators to generate predictions during the course of search? 

 
This question was revisited with the revised model employing the same procedures as described in the 

first paper. The consumption of computer resources by the two methods also remained the same. Each search 
employing the FORMGAS/IMEX simulator required about six days (150 hours) to complete on a dedicated 
Pentium III processor. Searches using the ANNs to generate predictions usually required 5 minutes or less on 
the same equipment and about 5 hours to conduct verification runs on the top 100 solutions. In fact, in the 150 
CPU hours required to complete one simulator-reliant search, it was possible create the entire knowledge base, 
train/test ANNs, conduct searches, and verify optimal solutions for all the analyses in Tables 3, 4, 5, and 6. 
With that caution in mind, examination of the results in Table 7 does show that the top solutions obtained from 
the simulator-reliant searches were slightly superior to the top solutions from the ANN-reliant searches under 
two of the three conditions. Under the low permeability model, the simulator-reliant search found a subset of 
the best solution from the ANN-reliant search which, while raising Risk% slightly, was a clearly more 
economical development plan. Under the pessimistic remediation outcomes condition, the advantage shown by 
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the simulator-reliant search’s best solution was very slight. Under the medium permeability model, the two 
forms of search generated identical best solutions. 
 

Table 7. Optimized Development Plans Obtained from ANN- vs Simulator-reliant Searches 
Under Various Conditions 

 
 
Condition 

 
Prediction 
Method 

 
Total 
Score 

 
 

Risk% 

 
 

$Cost 

 
 

Development Plan 
 
Low 

 
ANNs 

 
0.1500 

 
3.4 

     
    723,200 

 
R1 - R7, NV06, NV20 

Permeability  0.1604 5.1     776,644 R1, R3 - R7, NV06, NV13 
Model  

 
0.1967 9.2     767,800 R1 - R7, NV13, NV20, IHOR 

 FORGAS/ 0.1340 8.1     451,762 R1 - R7, NV06 
 IMEX 0.1500        3.4     723,200 R1 - R7, NV06, NV20 
  0.1529 3.9     720,885 R1, R2, R4, R6, R7, NV06, NV13 
 
Medium 

 
ANNs 

 
0.0487 

 
4.1 

     
    106,200 

 
R1 - R7 

Permeability  0.0628 5.8     117,000 R1 - R7, IHOR 
Model  

 
0.1049 4.1     384,200 R1, R3 - R6, NV13, IHOR 

 FORGAS/ 0.0487 4.1     106,200 R1 - R7 
 IMEX 0.0628 5.8     117,000 R1 - R7, IHOR 
  0.1049 4.1     384,200 R1, R2, R3, R6, R7, NV13, IHOR 
 
Pessimistic 

 
ANNs 

 
0.3887 

 
26.6 

  
 1,199,600 

 
R1 - R7, NV13, NV14, NV20 

Remediation  0.3934 27.5  1,191,400 R1 - R5, R7, NV13, NV14, NV20 
Outcome  

 
0.3954 34.1     951,000 R1 - R7, NV13, NV20, IHOR 

 FORGAS/ 0.3806 25.5  1,193,958 R1 - R7, NV13, NV17, NV20, IHOR 
 IMEX 0.3886 26.9  1,188,831 R1 - R5, R7, NV13, NV14, NV20, IHOR 
  0.3887 26.6  1,199,600 R1 - R7, NV13, NV14, NV20 

 
Conclusions 
 
 Basic Model Changes. The primary purpose of this paper was to demonstrate ways in which the ANN-
GA approach to simulation-optimization could address some of the uncertainties that face petroleum engineers 
when making decisions regarding field development planning. Before doing so, however, it was important to 
correct two weaknesses in the basic model of the field that had been implemented in the first paper. 
 

First, a fictitious production plant compressor was added to the model to reflect more realistic 
engineering constraints on low flowing wellhead pressures and a better estimate of the economic impact of 
operating the compressor to counteract low pressures. The effect of this facility on the baseline no-action case 
was, as expected, to increase the amount by which the field fell short of contract requirements under the 30-day 
peak service at 2.5 Bcf baseload. This is a reasonable outcome since a portion of withdrawn gas was now being 
diverted to operate the compressor. A second effect of adding compression facilities did not appear until the 
simulations to create the medium and high permeability portions of the knowledge base were completed. No 
field development plan, regardless of the number and location of wells involved, was able to reduce contract 
shortfall below 0.0101 Bcf. It is not clear if this “floor” is an artifact of the modeling process itself or if it 
genuinely reflects the reservoir’s response to conditions created by the surface facilities. 
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The second “fix” to the base model was a change in the skin factors assigned to remediated wells from 
the optimistic value of 2.0 to a more realistic value of 5.0. It was expected that this change would reduce the 
dominance of the remediation wells in the sets of optimal field development plans. This did happen to a certain 
extent; but the low cost of well remediation compared to drilling new wells still meant that the remediation field 
development options retained their popularity in the optimal solutions. 

 
Uncertainty Issues. The fundamental problem in addressing uncertainty within the context of 

simulation-optimization is to find a way to incorporate the uncertainty without overwhelming the process with a 
massive number of alternatives. One way to do this is to look at the matter from the decision-maker’s point of 
view, which entails breaking the uncertainty down into a small number of manageable scenarios and looking for 
solutions which can be reconciled across them. 

 
This approach was illustrated in the handling of two forms of uncertainty in the test field. The first of 

these involved disputed permeabilities in an important mid-section of the field. Rather than viewing the 
problem geostatistically, which might have involved hundreds of alternative realizations of the permeabilities, 
two reasonable alternative values were selected and assigned to the section as a block. The knowledge base was 
augmented to include evaluation of each field development plan under all three permeability models and the 
entire process of ANN training, GA optimization, and solution verification was carried out three times. Results 
were then examined to see if an overall plan of action could be constructed which would hold across all three 
permeability models. In this particular case, such a plan was possible because the optimal solutions to the 
higher permeability models were subsets of the solutions to the original, low permeability model. 

 
The same approach was applied to the problem of anticipating the relative success of remediation. All 

plans in the knowledge base involving remediation wells were evaluated a fourth time under the assumption 
that remediation would only produce a 50% improvement in skin factor. Optimal solutions obtained under this 
very pessimistic set of assumptions were compared with those obtained under the expected remediation 
outcomes and a plan reconciling the two views of the world was devised. It should be noted, however, that the 
best solutions under the pessimistic view were pretty far from meeting the injection/withdrawal contract. If the 
pessimistic view were to be taken seriously, the answer to the management problem would probably be to not 
try to provide 30-peak service at the 2.5 Bcf baseload with the existing array of development options. 

 
Not all approaches to the management of uncertainty require extending the knowledge base and 

repeating the ANN-GA process under different sets of assumptions. To illustrate a much simpler approach, the 
locations of new wells in the field were “handicapped” according to their distance from existing wells where the 
permeabilities are better known. This could be accommodated by simply adding a distance penalty to the 
objective function and applying different weights to the terms in the objective function to observe the effects. 
Once again, it proved possible to locate at least one new well location that contributed to optimal solutions 
under different weighting schemes. Results from only two weighting schemes were presented in the tables. But, 
given the speed with which these analyses can be performed, any number of trial values could and were applied. 

 
Flexability of the ANN-GA Approach. The analyses in this paper illustrate both the weakness and 

strength of the ANN-GA approach to simulation-optimization. Most of the simulation runs are conducted 
during the knowledge base creation stage, which essentially fixes the underlying model and the field 
development options. When assumptions change, as occurred, for example, when compression facilities were 
added, it was necessary to rerun the cases. This is the main reason why it is better to keep the total number of 
cases in the knowledge base rather small (around 500) and possibly live with a certain degree of error in the 
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ANN predictions. It is also preferable to postpone uncertainty analyses until the base problem and array of field 
development options have stabilized.   

 
On the other hand, nowhere is the power of the method more apparent than in the handling of the 

distance penalty for new wells. All within a few hours, it was possible to construct a new objective function and 
run many different analyses varying the weights applied to individual terms, whereas completing a single 
analysis relying on the full FORGAS/IMEX model to generate predictions would have required about six days. 
By enabling planners to experiment freely, the ANN-GA methodology greatly increases the value of reservoir 
simulators as decision-making tools. 

  
References 
 
 1. Johnson, V.M., Ammer, J.R., and Trick, M.D.: “Improving Gas Storage Development Planning Through 

Simulation-optimization”, SPE 65639, Society of Petroleum Engineers, Tulsa (2000).  


	Improving Development Planning in a Natural Gas Storage Field
	Through Simulation-Optimization:
	Uncertainty Analyses

	Table of Contents
	Tables and Figures
	Table 3. Optimized Development Plans Under Three Permeability Models
	Risk%
	Development Plan

	Table 4. Optimized Development Plans Under Expected vs. Pessimistic
	Remediation Outcomes
	Risk%
	Development Plan
	Low Permeability Model
	Medium Permeability Model


	Table 7. Optimized Development Plans Obtained from ANN- vs Simulator-reliant Searches
	Risk%
	Development Plan

	id142103cover.pdf
	DISCLAIMER




